Habitability of a Large Ghost Crater in Chryse Planitia, Mars

Dorothy Z. Oehler & Carlton C. Allen

Astromaterials Research & Exploration Science Directorate (ARES)

NASA - Johnson Space Center
Houston, Texas, U.S.A.

Support from ARES and ARES Mission Enabling Grant
HABITABILITY CRITERIA

Long-Lived H₂O
- Run-off or upwelling sources
- Container (basin or lake) to trap

Liquid H₂O
- Early Mars
- Enhanced heat flow
 - Regional (e.g. Tharsis)
 - Hydrothermal vents
 - Impact-related hydrothermal circulation - craters > 100 km

Renewing Nutrients
- Run-off -- catchment
- Upwelling (groundwater / hydrothermal)

GEOLOGIC CONTEXT

Oehler & Allen, Exploring Mars Habitability, June 14, 2011
GEOLOGIC CONTEXT: Drainage - Upwelling

Catchment
- Estimated from valley networks (channels from Carr; USGS MarsGIS)

Global Hydrology

Oehler & Allen, Exploring Mars Habitability, June 14, 2011
GEOLOGIC CONTEXT - Setting of Ghost Crater

CRATER
120 km diameter; 34°N, 37°W
Subdued
("ghost"/"stealth")
Noachian - Late Hesperian
(~Early Hesperian)

OUTFLOW CHANNELS
• Late Hesperian

Oehler & Allen, Exploring Mars Habitability, June 14, 2011
GEOLOGIC CONTEXT - Setting of Ghost Crater

MOUNDS
> 18,000 mapped
40,000 estimated

GEOLOGIC CONTEXT - Setting of Ghost Crater

Oehler & Allen, Exploring Mars Habitability, June 14, 2011
Chryse-Acidalia Mounds: Mud Volcano Analog

Oehler & Allen, Exploring Mars Habitability, June 14, 2011
Geologic Units

Vastitas Borealis
(Kreslavsky & Head, 2002; Tanaka et al., 2005)

- Late Hesperian/Early Amazonian - product of outflows
- Polygons, mounds, ghost craters - modification
- Outer margins constant elevation - groundwater table - or -
 emplacement in a standing body of water

Oehler & Allen, Exploring Mars Habitability, June 14, 2011
Proximal
Coarse-grained sediments

Distal
Fine-grained sediments; organic matter

FACIES

Elevation
> -1800 m
< -4850 m

Legend
mola_mud_volcanos
megt90n000eb.tif
Value
High : -1800
Low : -4850
mola_128deg_270e_hillshade.jp2
Value
High : 210
Low : 115
mola_128deg_090e_hillshade.jp2
Value
High : 255
Low : 0

Oehler & Allen, Exploring Mars Habitability, June 14, 2011
GHOST CRATER

RIM: Large knobs, irregularly shaped, lobate - possible hydrothermal circulation from impact

INTERIOR: ~1000’s m fill with giant polygons & smaller, circular mounds

Oehler & Allen, Exploring Mars Habitability, June 14, 2011
CRATER FILL

GIANT POLYGONS: 1-10 km

MOUNDS:
- 0.25-0.8 km diameter
- pitted
- central vents
- circular
- high albedo
- moats
- concentric form to crest
- possible flow structures

Similar to mounds in Acidalia.
Mud volcano analog.

Oehler & Allen, Exploring Mars Habitability, June 14, 2011
MOUNDS: Possible flow structures, concentric shape, younger than polygons

Oehler & Allen, Exploring Mars Habitability, June 14, 2011
Mud Volcanism

Mud volcanism creates microhabitats in the subsurface:

- fracturing sediments
- providing pathways for fluid migration

Oehler & Allen, Exploring Mars Habitability, June 14, 2011
CONCLUSION - High Potential for Habitability

WHY EXCEPTIONAL? Combination of LARGE SIZE and LOCATION (lowlands, outflows, distal facies)

HIGH EXPLORATION POTENTIAL
- Enhanced habitability
- Potential to include organics
- Potential of mud volcanoes to bring sediments from depth to the surface

Oehler & Allen, Exploring Mars Habitability, June 14, 2011