Joint use of MGS-MAG and MGS-ER measurements to better describe and understand the complex magnetic story of Mars

Benoit Langlais, Michael E. Purucker and Robert J. Lillis

CNRS UMR 6112, Laboratoire de Planétologie et Géodynamique
Université de Nantes, France
Incomplete Martian magnetic field history

Model resolution: 200 km

Total field, 400 km, Langlais et al. 2004
Incomplete Martian magnetic field history

Mars had a dynamo (when did it start and stop?)
Lithospheric rocks cooled or formed in the presence of an ambient magnetic field (where?)
Mars lost its dynamo (when, 4.2 or 3.7 Gyrs ago, and why?)
Lithospheric rocks demagnetized through volcanic or impact events (where and when?)

Sharper, more accurate description of the current field will help to better understand the past magnetic field
Why an improved model?

Few global models of the Martian magnetic field, fewer models of the magnetization

Equivalent Source Dipoles (ESD) are used: at each point, the magnetic field results from the addition of the fields created by each individual source (Mayhew 1979)

Previous ESD model (Langlais et al., 2004):

- binned input data, 1°x1°x10km cells
 - field variations may exceed 700 nT/° (AB, SPO)
 - no external field proxy (MO)
- data limited to 1997-2001 time period
- horizontal resolution ~ 200 km
Why an improved model?

Few global models of the Martian magnetic field, fewer models of the magnetization

Equivalent Source Dipoles (ESD) are used: at each point, the magnetic field results from the addition of the fields created by each individual source (Mayhew 1979)

New ESD model (preliminary results):

- true (decimated measurements)
 - improved removal scheme for outliers
 - external field proxy for MO data
 - ER data also used: new constraint at low altitude
- horizontal resolution ~ 120 km (will be better)
Data selection, low altitude (AB, SPO)

550,000 measurements available below 350-km altitude

Decimation: distance between adjacent measurements: $0.8^\circ < d < 5.0^\circ$

maximum rms (obs. vs. linear extrapolation) < 1.5 nT

Decimated dataset: 120,000 measurements

Comp.: 60%

Decimated dataset: 120,000 measurements

Comp.: 23%

Comp.: 60%
• Incident electrons with pitch angles further from 90° go deeper in the atmosphere before reflecting → higher chance of absorption (Lillis et al., 2008)

• Pitch angle-dependent attenuation of reflected electrons contains information about the crustal magnetic field that reflects the electrons and the atmosphere which absorbs them.

• ~2.3 million measurements over 7 years.
• Smoothed using 200 km diameter circle
• Spatial resolution: ~200 km
• Sensitivity threshold: 4nT
• No data where field lines are permanently closed
Data summary

MO (~ 400 km)
96% cov.

AB, SPO (90 -> 350 km)
42% cov

ER (185 km)
80% cov
Data inversion scheme

The inversion is iterative; L2 norm is used; Conjugate gradient approach, needs to linearize the problem.

The use of scalar data requires a priori knowledge of the magnetization vector and associated magnetic field vector at observation location:

- step 1: only vector data, a ‘rough’ model M0 is computed
- step 2: M0 used as initial model, vector and scalar data used
- step 3: rms residuals are computed and evolution is compared
- step 4: a model M1 is chosen and replaces model M0 in step 2
- step 5: final model when M1 and M0 do not differ by more than 10^{-3}
Results

Final model: correlation >0.98

<table>
<thead>
<tr>
<th></th>
<th>σ_{Br}</th>
<th>σ_{Bt}</th>
<th>σ_{Bp}</th>
<th>σ_{B}</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB, SPO</td>
<td>22.3</td>
<td>23.2</td>
<td>23.3</td>
<td>24.9</td>
</tr>
<tr>
<td>MO</td>
<td>3.9</td>
<td>4.3</td>
<td>4.2</td>
<td>4.3</td>
</tr>
<tr>
<td>ER</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>15.5</td>
</tr>
</tbody>
</table>

Power spectra compared

Cain et al., 2003
Lillis et al., 2010
Total field

altitude 400 km

Langlais et al., 2004

This study
Total field

altitude 200 km

Much less small scale noise, better definition of low fields

This study

Langlais et al., 2004
Radial field

Langlais et al., 2004

This study

200 km
Radial field

150 km

Sharper contours
No small-scale noise
-690/+1120 nT

Extrema: M_r -14/+21 A/m;
M_θ -10/+16 A/m; M_ϕ -9/+9 A/m

Rms magnetization ~ 1 A/m
Isidis (3.96 Gyrs) not magnetized. Huygens (3.98 Gyrs) at a minimum. Syrtis Major (3.72 Gyrs) surrounded by weakly magnetized units, Nili Fossae at a minimum.

Antoniadi (3.79 Gyrs) and nearby – unnamed – crater have very different signatures. Schiaparelli (3.92 Gyrs) and overlap, Flaugergues, Newcomb (4.00 Gyrs) are close to magnetic maximum.
Apollinaris Patera (3.81 Gyr) & Lucus Planum (younger) magnetized (Langlais and Purucker, 2007; Hood et al., 2010)

de Vaucouleurs has a weaker signature (3.95 Gyr)
Summary

1/ A new model: more input data, improved spatial resolution, better noise reduction, sharper definition

2/ Global, as well as local and detailed studies are possible at lower altitude, with more confident results.

3/ The magnetic field history of Mars is still not fully understood; dynamo cessation timing is uncertain (~3.7 Gyrs or ~4.2 Gyrs). Other scenario are possible, implying different dynamo regime (see Amit et al. poster, and 2011, PEPI)

4/ More, lower altitude measurements are needed. MAVEN is awaited!