

Consideration of a Solar Mission

Weiqun Gan Purple Mountain Observatory, CAS

1st Workshop of a CAS-ESA Joint Mission, Chengdu, 25-26 Feb. 2014

Outline

- Solar Communities in both sides
- Scientific Objectives
- Feasibilities
- Involvement Background
- Remarks on three proposals
- Conclusions

Solar Communities in both sides(1/2)

Solar Physics 2005-2010: Authors' Countries & Citing Authors' Countries

European (exclude Russia) + Chinese: 50%-55%

Solar Communities in both sides(2/2)

However, the number of solar space missions led by European and Chinese are relatively low (1960-2012):

To develop a joint CAS-ESA Solar Mission thus seems to be much necessary, that also means zero breakthrough for Chinese solar community

Scientific Objectives(1/3)

Scientific Goals in "The 2013-2022 Decadal Survey in Solar and Space Physics"

- Determine the origins of the Sun's activity and predict the variations of the space environment;
- Determine the dynamics and coupling of Earth's magnetosphere, ionosphere, and atmosphere and their response to solar and terrestrial inputs;
- Determine the interaction of the Sun with the solar system and the interstellar medium;
- Discover and characterize fundamental processes that occur both within the heliosphere and throughout the universe.

Scientific Objectives (2/3)

Most current missions will be unavailable in 2021 or later! Compatibility should be considered with Solar Orbiter and Probe+.

Scientific Objectives(3/3)

Some key judgments:

- Scope: Sun's activity or fundamental processes
- Observations should be new, never be done before (individually or in a combination of imstruments) or play a irreplaceable role together with other missions then
- Focusing on some key questions, like, how does the solar eruption accumulate its energy, be triggered, and then release its energy?

Feasibilities

The key boundary conditions

- Payload mass < = 60kg;
- Payload power 50 watt average (typical);
- Operational lifetime of satellite 2-3 years.

Which exclude a mission needing a huge resource, like a comprehensive observatory;

A small mission, focusing on one or a few of significant scientific objectives, is much favorable!

Involvement Background(1/2)

Good relationship between two communities

- 5 times bilateral solar physics meetings between China and France: 1999 (Xian, China), 2002 (Paris), 2005 (Shanghai), 2008 (Paris), 2011 (Nice);
- 2 times bilateral solar physics meetings between
 China and Germany: 2012(Nanjing), 2015(Gottingen);
- 1st European-Chinese Solar Physics Workshop is being prepared;
- Personally, more than half of Chinese solar physicists had a long-term working experience in Europe countries, mostly in Germany, France, and so on

Involvement Background(2/2)

Previous Space Project Cooperation

SMESE (Small Explorer for Solar Eruptions): a joint mission between CNES and CNSA. Contributors include IAS and LESIA from French side, and PMO, NJU, CSSAR, and NAOC from Chinese side. Phase-0, Phase-A and A+ studies were successfully underwent from March 2006 to June 2008

Remarks on three proposals(1/2)

Three solar proposals were proposed:

- MASC: Magnetic Activity of the Solar Corona
 a Hard-X-ray spectrometer, a UV/EUV imager, and a Visible Light / UV polarimetric coronagraph
- SEEPE: Solar Energetic Emission and Particle Explorer High energy band spectrometer; X-ray polarimeter; Energetic electron and ion detectors
- SWUSV: Space Weather & Ultraviolet Solar Variability 6 instruments: from vector magnetometer, ultraviolet experiment, radiometer, to high energy burst spectrometer

(another proposal poster "A Compact Solar Hard X-ray Polarimeter" could be included in SEEPE)

Remarks on three proposals(2/2)

	MASC	SEEPE	SWUSV
Scientific objectives			
Boundary conditions			
Cooperation			
Heritage			
Compatibility			

For each proposal, beside the boundary conditions should be met, the importance, especially the compatibility and complementary should be emphasized.

Conclusions

- 2021 is just the beginning of the 25th solar maximum, which provides an excellent opportunity to observe the activity of the Sun;
- Both solar communities are strong in the world and should play a commensurate role in developing solar space missions;
- Three proposals look very novel, deserving further investigations.