Programme : Towards the Use of Lunar Resources

1

	D	ay 1, Tuesday	3 July: Setting the Scene (Erasmus High Bay)	
Time	Duration	Presenter	Subject	Affiliation
9:15	00:15	J. Carpenter	Welcome and introduction remarks	ESA
09:30	00:05	J. Woerner Director General	Welcome address (Video Message)	ESA
09:35	00:10	D. Parker Director of Human and Robotic Exploration Programmes	Lunar Exploration in the ESA European Exploration Envelope Programme	ESA
09:45	00:15	J. Carpenter	Towards a Lunar Resources Strategy	ESA
10:00	00:15	G. Sanders	Lunar Resources in NASA	NASA
10:15	00:15	A. Abbud- Madrid	The current status of lunar resources	Colorado School of Mines
10:30	00:10	Clive Neal	Lunar Resources in the LEAG Exploration Roadmap	University of Notre Dame
10:40	00:20	Coffee Break		
Ratio	nales for U	tilising Lunar	Resources 1: Use Cases	
11:00	00:15	M. Landgraf	Products and quantities to close ISRU	ESA
11:15	00:05	R. Gonzalez- Cinca	In-situ resource needs for production of energy in future lunar exploration scenarios	UPC- Barcelona Tech
11:20	00:05	Agata Jozwicka- Perlant	Space Logistics mindset in Ariane Group	Ariane Group
11:25	00:05	R. Buchwald	Airbus vision of sustained lunar exploration architecture based on ISRU	Airbus Defence and Space
11:30	00:05	L. Kiewiet P. Delande	Concept of Operations for harvesting ice in the Lunar south pole to produce rocket propellant	SpacE Exploration and Development Systems (SEEDS)
11:35	00:05	M. Viturro Balufo & S.	Transport architecture based on lunar water".	ISAE- SUPAERO

Programme : Towards the Use of Lunar Resources

11:4000:05M. PerinoPreliminary Architecture for Lunar ISRU OperationsThales Aleni Space			Segura Munoz		
	11:40	00:05	M. Perino	Preliminary Architecture for Lunar ISRU Operations	Thales Alenia Space

11:45	00:50	Interactive session: Who are the potential users of lunar resources,
		what do they need, how much and when?

Ratio	Rationales for Utilising Lunar Resources 2: Economics				
12:35	00:15	M. Link	The Luxembourg Space Resources Initiative	Luxembourg Ministry of the Economy	
12:50	00:05	A. Kapoglou	The application of Mission Orientated Innovation Policy to Lunar Resources	University College London / ESA	
12:55	00:05	J. Ocasio- Christian	Current global trends that we are seeing with respect to private and government investments	Caelus Partners	
13:00	01:00	Lunch (ESTEC Canteen)			
14:00	00:30	Discussion session: What are the economic rationales for investing in lunar resources and ISRU technology in the short medium and long term?			

Bound	oundary Conditions 1: Resource Availability				
14:30	00:15	E. Sefton Nash	Polar volatiles	ESA	
14:45	00:15	K. Joy, M. Anand and I. Crawford	Regolith and pyroclastic deposits	Universty of Manchester, Open University and Birkbeck University of London	
15:00	00:05	N. Bowles	Prospecting opportunities from different platforms	University of Oxford	
15:05	00:05	T.G. Wasilewski	Extra-terrestrial water resources categorization and evaluation method	Space Research Centre PAS	

15:10	00:05	J. Lamamy	ispace Europe's activities related to lunar exploration and ISRU research	ispace Europe	
15:15	00:05	B. Bahov	Water deposits	Space Mining Technologies	
15:20	00:20	Coffee Break			
15:40	01:00	Interactive session: What do we know about possible resources at the lunar surface, what are the gaps in our knowledge, what needs to be done in advance of resource utilisation and technology demonstration?			

Bound	Boundary Conditions 2: Legality and Governance				
16:40	00:05	A. Salmeri	the legality of Lunar Resources utilisation	University of Leiden	
16:45	00:15	T. Masson	Governance of lunar resources	University of Leiden	
17:00	00:10	Q&A on legal status for lunar resources utilisation, major issues, steps need to be taken and when			

17:10	Reception and	poster session
-------	---------------	----------------

19:00	End Day 1
-------	-----------

Day 2, Wednesday 4 July: Technologies (Erasmus High Bay)

09:00	00:10	T. Ghidini	Introduction to the ISRU Technology Day (video	ESA
			message)	

Materi	ials and C	onstruction		
09:10	00:05	M. Conti	Potential of The Metalysis FFC Process to Produce Oxygen and Metal Alloys in an Off World Environment.	Metalysis
09:15	00:05	J. Schroeder	The Space Foundry: Refining Metal in Cislunar Space and on the Moon	CisLunar Industries S.A.
09:20	00:05	H. Lakk	Robotic manufacturing of fibrous structure from lunar basalt fibre on the Moon. Fungal based biocomposite material for habitat structure on the Moon and Mars	ESA
09:25	00:05	X. De Kestelier	HASSELL studio's entry to the 3rd Phase of NASA's 3D printed Mars Habitat Centennial Challenge	HASSELL studio
09:30	00:05	C. Ortega	Use of cable robot for Moon habitats 3D printing	AVS
09:35	00:05	E. Dini / P. Carboni	3D-Printing of Lunar Base using Lunar Soil	Monolite UK D-Shape
09:40	00:05	A. Ellery	Building lunar industrial infrastructure from lunar resources using robotic 3D printing	Carleton University
09:45	00:05	K. Doerfler	Robotic In situ Fabrication - The In situ Fabricator IF1	ETH Zurich
09:50	00:05	P. Weiss	REGOLIGHT project (EC); LUNA (ESA) project: URBAN (ESA): Several finalized DEEP-SEA MINING Projects	COMEX SA
09:55	00:05	B. Imhof	RegoLight - Sintering with Solar Light for building ISRU habitats;	LIQUIFER Systems Group
10:00	00:20	Coffee Break		
10:20	00:05	A. Markopoulou	Robotic and Additive manufacturing on site	Institute for Advanced Architecture of Catalonia
10:25	00:05	J. Garcia Espinel	Autonomous and teleoperated vehicles for construction and industrial logistics using 5G and Acciona's Large Scale 3D Printing Technology	Advanced and Digital Innovation Hub

10:30	00:05	M. Dall'Igna	NASA Centenial Challnges: 3D Printed Habitat Challenge and Structural Member Competition	Foster+Partners
10:35	00:05	S. Linke	TUBS-M and TUBS-T regolith simulant development ; "MIRA3D" rover	Institute of Space Systems; TU Braunschweig
10:40	00:05	J. Lee	Building Astronaut Housing on the Moon's Polar Region	LATMOS; University Paris Saclay
10:45	00:05	S. Piesik	Lessons learnt from terrestrial construction in extreme environments	3 ideas Ltd
10:50	00:05	A. Cowley	Activities of Spaceship EAC relating to ISRU	ESA
10:55	00:05	A. Makaya	Overview of past and ongoing ESA activities in ISRU for Construction and Hardware manufacturing	ESA
11:00	00:05	B. Foing	Smart1 results on lunar sites for resources; Plant growth using lunar soil	ESA
11:05	00:10	Break	•	
Oxyge	n and Wa	ter from Rego	olith and Polar Volatiles	
11:15	00:05	L. Offermann	Overview of Processes to produce Oxygen from Lunar Regolith	ESA
11:20	00:05	P. Reiss	Lunar ISRU technologies, extraction of volatiles, and handling of regolith at TU Munich	Technical University Munich
11:25	00:05	D. Binns	ISRU payload and Pilot Plant Study outcomes	ESA
11:30	00:05	M. Lavagna	Carbothermal reduction, experiments with ice in vacuum and 3D printing activities	Poli. Di Milano
11:35	00:05	F. Venditti	Carbothermal reduction extraction payload and terrestrial demonstrator	OHB ITALIA
11:40	00:05	T. Denk	(Really) Large Scale and Rather Complete Ilmenite Reduction Demonstrator: Technology and Lessons Learnt	Ciemat - Plataforma Solar de Almera
11:45	00:05	D. Urbina	Alchemist and LUVMI	SAS
	00:05	R. Fisackerly	PROSPECT development and status	ESA
11:50				

12:00	00:50	Interactive session: What can we learn from terrestrial industries and how can we partner		
12:50	01:10	Lunch (ESTEC canteen)		
Energy	and Pow	er		
14:00	00:05	L. Celotti	Moon Energy Storage and Generation	Sonaca Space GmbH
14:05	00:05	S. Fereres	Overview on terrestrial thermal energy storage systems and possibilities for energy generation and storage in future lunar ISRU habitats	Abengoa Innovacion
14:10	00:05	J. van Oorschot	how an energy grid on the moon should help accelerate the developments towards a lunar village	Maana Electric
14:15	00:05	J. Schleppi	Utilisation of lunar regolith for Power generation on the lunar surface	Heriot-Watt University
14:20	00:05	M. Marigliano	Energy harvesting using reflecting surfaces to concentrate solar energy on celestial bodies.	ALTRAN

14:25	00:30	Discussion: What are the synergies and feed forward opportunities with
		resource utilisation on asteroids and Mars

14.55	00.50	Coffee Break
14.00	00.20	Conce Break

Regolith Excavation and Processing				
15:15	00:05	J. Cilliers	Estimating the mining scale required to satisfy Lunar oxygen demand	Imperial College London
15:20	00:05	K. Seweryn	Excavation technique dedicated for reduced gravity environments	Space Research Centre PAS (CBK PAN)
15:25	00:05	M. Sperl	Fundamental challenges in materials physics rearding properties of regolith; processed materials; and handling of processed and unprocessed ingredients	DLR
15:30	00:05	G. Cao	Ilmenite enrichment of lunar regolith to extract oxygen and for production of physical assets using lunar regolith	University of Cagliari and Sardinian AeroSpace District (DASS)
15:35	00:05	D. Martin	The ESA Sample Analogue Curation Facility	ESA (ECSAT)
15:40	00:05	A. Risan Borgersen	Regolith beneficiation and comminution	SolSys Mining
15:45	00:05	U.A. Peuker	Effect of reduced gravity along the mechanical Mineral processing chain	TU Bergakademie Freiberg
15:50	00:05	J. Keravala	Developing robotic industrial workforce for space mining and construction	OffWorld
15:55	00:05	H. Otto	Coupled DEM-CFD simulation of a bin flow of lunar regolith simulant JSC-1A in partial vacuum	University Magdeburg
16:00	00:05	S. Shergill	Adaptive ISRU systems	Cranfield University
16:05	00:05	J. Katzer	Harnessing Multivariate Statistics for Assessment of Lunar Soil Simulants	Koszalin University of Technology
16:10	00:05	R. Anyszka	Suitability of Lunar regolith toward high- performace filler synthesis. Application of sulfur- concrete in Lunar environment	University of Twente; Lodz University of Technology;
16:15	00:10	Splitting into sessions		
16:25	01:00	01:00 Interactive session: What are the most promising technologies in each area, what are the main technical challenges, what has to be demonstrated or tested on the Moon and when?		
17:25	End	End		

Day 3, Thursday 5 July: Missions and implementation (ERASMUS Centre)

09:00	01:20	Briefing on the ESA Lunar Resource Utilisation Mission and Industrial Activities			
10:20	00:10	Group Photo			
10:30	00:20	Coffee Break			
Missio	ns, suppo	rting technolo	gies and commercial activities		
10:50	00:05	K. Acierno	ispace's updated M1 and M2 plans	ispace Europe	
10:55	00:05	A. Berinstain	The Moon Express MX family of robotic explorers	Moon Express Inc.	
11:00	00:05	C. Sallaberger	Canadian Technology status; missions & system definition activities; Collaboration opportunities	Canadensys Aerospace	
11:05	00:05	A. Zuniga	Developing and building lunar infrastructure for robotic missions and approaches to establishing sustainable business models using the COTS acquisition model.	NASA Ames Research Center	
11:10	00:05	M. Haeming	Overview on know-how; goals; and partnerships for moon exploration and ISRU with particular focus on ISRU payload development.	Airbus Defence and Space	
11:15	00:05	A. Jaime Albalat & L. Richter	OHB activities in support of ISRU	OHB System AG	
11:20	00:10	Q&A			
11:30	00:05	M. Hazadi	Commercial exploration of the Moon - How commercial missions can support lunar resource exploration	Puli Space Technologies	
11:35	00:05	G. Martucci di Scarfizzi	Logistic and operational approaches and constraints	ALTEC S.p.A.	
11:40	00:05	K. Yoshida	Robotics technology for lunar surface mobility and exploration of resources	Tohoku University	
11:45	00:05	J. Vrublevskis	Stirling nuclear and cryocooling systems for the Moon & lunar communication data relay and future navigation system.	Thales Alenia Space, UK	
11:50	00:05	J. Jaworski	Highlights from Rover Speed Characterisation for Lunar Exploration project and PIAP terrestrial mobile robots for lunar ISRU plant operations	PIAP Space	
11:55	00:05	L. Feruglio	Artificial Intelligence for Mission Autonomy Autonomous Operations for Lunar ISRU	AIKO S.r.l.	

12:00	00:10	Q&A
12:10	01:00	Reporting from technology splinters and identification of in situ technology demonstration needs
13:10	01:00	Lunch
What	next?	
14:10	00:15	A community vision for lunar resources
14:25	00:15	The roles of ESA and other actors
14:40	00:15	Future community building and support
14:55	00:15	Next steps

15:10	Closing Reception and Networking Opportunity
17:00	Close

Posters		
D. Lucsanyi	Challenges and simulations of the lunar surface radiation and plasma environments and effects	Puli Space Technologies; ESA/ESTEC
R. Bamford	radiaiton risk and active shielding approaches	RAL Spsce; Rutherford Appleton Laboratory
L. Herrera & F. Ruiz	Moon Village Labs: a knowledge-sharing platform designed to actively interconnect Moon Villager students with Moon Villager professors and companies.	Somethingg
L. Overmeyer	Einstein-Elevator	Leibniz University Hannover
M. Johnson	CubeSat scale in-situ spacecraft/lander/rover printer	Imperial College London / PocketSpacecraft.com
M. Verma	Design and integration of: Lunar (Nano) Rovers ISRU payloads Swarming	Stellar Space Industries
A. Gregorio	A lunar rover system including the BRICSAT actuator and lunar science with microwaves	University of Trieste; PICOSATS SRL
H. Mátyás	"Preparing a Lunar Rover Mission in the Framework of Analog Planetary Research"	Puli Space Technologies
Jarosław JAWORSKI		PIAP Space Sp. z o.o., Warsaw Office
M. Mokthari P. Sossi F. Moynier	Experimental determination of the Zinc isotopic fractionation factor during evaporation	Institut de Physique du Globe de Paris
Luca Celotti	MESG – MOON ENERGY STORAGE AND GENERATION Concept design and analysis	Sonaca